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In most combustion processes pyrolyzed fuel forms nanospheres called primary particles that agglomerate 
into micro-scaled polydisperse fractal soot aggregates, as shown in Fig. 1.  The impact of these aggregates 
on human health and the environment are functions of their motility and optical characteristics, which in 
turn depend on the number of primary particles per aggregate, Np.  Accordingly, there is a critical need for 

instruments that quickly assess the size of aggregates within a 
soot-laden aerosol, which is complicated by the fact that soot 
aggregate sizes are rarely monodisperse; instead, due to 
aggregation dynamics they obey an unknown distribution 
function P(Np). 
 
Multiangle elastic light scattering is a promising technique for 
characterizing P(Np).  In this procedure, shown schematically in 
Fig. 2, a collimated light source is shone through a soot-laden 
aerosol and the scattered light is measured over a set of angles.  
Plotting the scattered light intensity versus the scattering angle 
reveals the mean particle size and a ratio of distribution 
moments, and by assuming a distribution type (most often 

lognormal) one can then infer the distribution parameters from this information [1].  The presumed 
distribution type may not necessary be correct, however. 

 
 
 
 
 
 
 
 
 
 
Figure 1.  The transport and optical 
properties of soot aggregates depends on 
the number of primary particles, Np, 
within the aggregate. 

 
An alternate way to recover P(Np) is by deconvolving the governing integral equation 
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where the kernel, K(θ, Np), is derived from light scattering physics [2] and C depends on the experimental 
apparatus and the aggregate number density, Nagg, in the 
aerosol.  If these parameters are known Eq. (1) is a 
Fredholm integral equation of the first-kind, which is ill-
posed due to the smoothing properties of the kernel.  In 
particular, since the intensity of light scattered by soot 
aggregates is roughly proportional to Np

2 the contribution 
made to b(θ ) by small aggregates is overwhelmed by 
scattering from larger aggregates.  

 
 

 
This problem is solved by transforming Eq. (1) into a 
matrix equation, Ax = b, where x is a discrete form of 
P(Np) and b contains the angular scattering data.  The ill-
posedness of Eq. (1) means that A is ill-conditioned, so 
the light scattering data must be augmented with 
additional equations (called priors) that promote assumed 
attributes of P(Np).  Analyzing the angular scattering 
intensity data with an assumed distribution type as described above is one way to do this, although this 
procedure ignores the underlying ill-posedness of the problem since it only finds one of many candidate 
solutions that could explain the data. 

 
 
 
 
 
 
 
 
 
 
 
Figure 2.  Schematic of a multiangle elastic 
light scattering experiment 
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A better way to incorporate priors is through maximum a posteriori (MAP) inference, which finds the x that 
maximizes the posterior probability P(x|b), which through Bayes’ theorem is given by 
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where P(b|x) is the probability of the data in b occurring for a given x, P(b) is the marginal probability of 
the data, and Pmodel(x) is the probability of the solution being correct based on assumed priors.  Since P(b) 
only scales P(x|b), it can be ignored. 
 
Relying solely on the multiangle scattering data without incorporating additional priors is equivalent to 
maximizing P(b|x) by itself.  Assuming the data in b is contaminated with Gaussian-distributed error 
having a variance σ2,  
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which is minimized by solving Ax = b.  Since A is ill-conditioned, however, there exists a large set of 
solutions that “almost” minimizes ||Ax−b||22, so it is necessary to add additional priors through Pmodel(x) to 
obtain a robust estimate for x.  Based on the physics of aggregation we expect x to be smooth, which can be 
promoted through a Gibbs-type prior, 
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where L is a first-order smoothing matrix defined so that Eq. (4) is minimized by a uniform solution.  By 
definition x must also be strictly nonnegative, which is enforced by  
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where the Heaviside function, H(x), is zero if x < 0 and otherwise equals unity.  Assembling Eqs. (2-5), 
letting λ2 = 2σ2β, and taking the logarithm shows that P(x|b) is maximized by the solution of the 
constrained linear least squares problem 
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which is equivalent to constrained Tikhonov regularization [3, 4].   
 
We demonstrate this technique by deconvolving artificial data generated with C = 1 and a specified P(Np) 
found by fitting a lognormal distribution to a histogram approximation of P(Np) derived from transmission 
electron microscopy (TEM) of soot sampled from a well-characterized flame [5].  The artificial data is 
contaminated with Gaussian noise corresponding to a standard deviation of 3%, which is typical of 
experimentally-collected data.  Figure 3 (a) shows the solution obtained with a value of λ corresponding to 
the location of maximum curvature on the L-curve in Fig. 3 (b) [4].  The reconstructed distribution agrees 
with the imposed distribution except at small Np, which is expected given the Np

2 dependence on scattering 
intensity described above. 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.  (a) Reconstructed artificial data solved using MAP with smoothness and nonnegativity priors, 
and (b) the L-curve used to find λ. 
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The problem is substantially more challenging if C is unknown, which is often the case since Nagg is 
difficult to measure independently.  In this case, it would be desirable to treat C as an unknown parameter 
to be solved by MAP inference.  We evaluate the feasibility of this approach by analyzing angular 
scattering data found under identical experimental conditions used to obtain the TEM-histogram [6]. 
 
Unfortunately f(x) derived from the smoothness and nonnegativity priors lacks a strong minimum, so it is 
necessary to impose further priors to find robust solutions for both C and x.  The TEM-derived histogram 
shows that P(Np) qualitatively resembles a log-normal distribution so we define an additional prior to 
promote this distribution shape 
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where θ* contains the parameters of the lognormal distribution that best matches the current estimate of x, 
found by minimizing the Kolmogorov-Smirnov goodness-of-fit statistic, and xdist(θ*) is that distribution 
evaluated at the same discrete Np values that correspond to the elements of x.  Combining this prior with 
Eqs. (3-5), defining γ2 = 2σ2α, and taking the logarithm shows that P(x|b) is now maximized by  
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A distinct solution for C* emerges for γ > 1, although f(x) increases with γ because the distribution prior, 
Eq. (7), contradicts the smoothness prior, Eq. (4).  Figure 4 (a) shows that the recovered solution does 
indeed match the TEM-derived histogram, and substituting x* and C* back into Eq. (1) recovers the 
experimentally-observed data as shown in Fig. 4 (b). 

 

 (b) 0.035 
 
 
 

0.030

 
 g(

θ)
 

P(
N

p)
 0.025

0.020

 
 
 
 
 
 
 
 
Figure 4.  (a) MAP analysis of experimental data with smoothness, nonnegativity, and distribution priors 
recovers a distribution that closely matches the TEM histogram; substituting both distributions back into 
Eq. (1) (b) reproduces the experimental data. 
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